英语论文网 英语论文网为您写Kronecker乘积图的超连通性(英文)英文论文提供相关论文范文资料参考!希望对您的论文写作有帮助,请 或分享我们
    英语论文
您当前位置:英语论文网 >> 英语论文 >> 浏览文章>>Kronecker乘积图的超连通性(英文)论文
Kronecker乘积图的超连通性(英文)论文

导读:本论文是一篇关于Kronecker乘积图的超连通性(英文)的优秀论文范文,对正在写有关于Kronecker乘积图的超连通性(英文)论文的写作者有一定的参考和指导作用,《Kronecker乘积图的超连通性(英文)论文》论文片段:hefirst such parameters one generally encounters are connectivity and edge connectivity, which measure the vulnerability of a graph or network. The connectivity gives the minimum cost to disrupt the network.  All graphs considered in this paper arefinite, simple and connected. For notation and ter

Kronecker乘积图的超连通性(英文)论文WORD版下载 英语论文范文 :
AbstractLet G1 and G2 be two connected graphs. The Kronecker product G1×G2 is the graph with vertex set V (G1×G2) = V (G1)×V (G2) and the edge set E(G1×G2) = {(u1,v1)(u2,v2) : u1u2∈E(G1),v1v2∈E(G2)}. In this note, we show that G×Kn (n≥4) is super-κif and only ifκ(G)n >δ(G)(n?1), where G is any connected graph and Kn is the complete of n vertices. Furthermore, we show that for any connected graph G with at least three vertices, ifκ(G) =δ(G) then G×Kn is super-κfor n≥3. This result strengthens the known results of Guo et al..
  Key wordsKronecker product; Connectivity; Super connectivity
  CLC numberO 15Document codeA
  1Introduction
  There have been several proposals for measures of stability of a communication network. Thefirst such parameters one generally encounters are connectivity and edge connectivity, which measure the vulnerability of a graph or network. The connectivity gives the minimum cost to disrupt the network.
  All graphs considered in this paper arefinite, simple and connected. For notation and terminology not defined here, we refer to West[1]. The connectivity of a simple graph G is the number, denoted byκ(G), equal to the fewest number of vertices whose removal from G results in a disconnected or an isolated vertex. A set S? V (G) is a vertex-cut of G, if G?S is either disconnected or an isolated vertex. In particular, a vertex-cut S is called trivial if G?S isolates a vertex. A graph G is super connected, or simply super-κ, if every minimum vertex-cut of G is trivial, i.e. every minimum vertex-cut of G isolates a vertex. For a graph G, we denote byδ(G) the minimum degree of G, d(v) the degree of the vertex v, N(v) the set of the neighbors of v.
  The Kronecker product G1×G2of graphs G1and G2is the graph with the vertex set V (G1)×V (G2), in which two vertex (u1,v1) and (u2,v2) are adjacent if and only if u1u2∈E(G1) and v1v2∈E(G2). Hence, it is clear that the degree of a vertex(u,v) in G1×G2is equal to dG1(u)dG2(v).
  Weichsel[2]proved that if G1and G2are two connected graphs, then G1×G2is connected if and only if G1and G2are not both bipartite graphs. Although there are many papers on the Kronecker product (sometimes called direct product, tensor product , cross product, categorical product, or conjunction etc.) of graphs, very few results on the connectivity of the Kronecker product of graphs have been reported. Breˇsar andˇSpacapan[3]obtained some bounds on the edge-connectivity of Kronecker products of graphs, and upper bounds on the connectivity of the Kronecker products of graphs. Mamut and Vumar[4]showed thatκ(Kn×Km) = (n?1)×(m?1) for any n≥m≥2 and n≥3; Guji and Vumar[5]investigated the connectivity of the Kronecker product of a connected bipartite graph G and complete graph Knwith n≥3 and reported thatκ(G×Kn) = min{nκ(G),(n?1)δ(G)}; Later, L. Guo et al.[6]strengthened their result by showing that for any connected bipartite graph G and complete graph Knwith n≥3, ifκ(G) =δ(G), then G×Knis super-κ. Very recently, Y. Wang and B. W

关于Kronecker乘积图的超连通性(英文)论文范文下载

WWw.YingyuLunwen.com 英语论文网整理提供

    英语论文

郑重声明:未经授权禁止对本站论文进行摘编、转载、复制或建立镜像。如有违反,将追究其法律责任!
免责声明:本站部分论文范文由网友上传,由于数量过多,我们无法考究每篇论文的来源及作者,如果版权问题,请及时联系我们删除或改正!
Kronecker乘积图的超连通性(英文)论文英语论文网整理提供,英语论文网免费提供各类英语论文范文,包括:英语教学论文|英语本科论文|英语毕业论文|英语论文 |论文下载服务等喜欢我们就将我们分享给10位以上的好友.